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SUMMARY 
A numerical technique is developed for the simulation of free surface flows and interfaces. This technique 
combines the strength of the finite element method (FEM) in calculating the field variables for a deforming 
boundary and the versatility of the volume-of-fluid (VOF) technique in advection of the fluid interfaces. The 
advantage of the VOF technique is that it allows the simulation of interfaces with large deformations, including 
surface merging and breaking. However, its disadvantage is that in solving the flow equations, it cannot resolve 
interfaces smaller than the cell size, since information on the subgrid scale is lost. Therefore the accuracy of the 
interface reconstruction and the treatment of the boundary conditions (i.e. viscous stresses and surface tension 
forces) become grid-size-dependent. On the other hand, the FEM with deforming interface mesh allows accurate 
implementation of the boundary conditions, but it cannot handle large surface deformations occurring in breaking 
and merging of liquid regions. Combining the two methods into a hybrid FEM-VOF method eliminates the major 
shortcomings of both. The outcome is a technique which can handle large surface deformations with accurate 
treatment of the boundary conditions. For illustration, two computational examples are presented, namely the 
instability and break-up of a capillary jet and the coalescence collision of two liquid drops. 
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1. INTRODUCTION 

Free surface flows and interfaces between two immiscible fluids or materials with different phases are 
observed in many natural and industrial processes. Various numerical techniques have been developed 
to simulate these flows. However, owing to the complexity of the problem, each technique is tailored to 
a particular category of flows. For instance, boundary integral techniques'" are mainly used for 
simulating inviscid irrotational flows and the limiting case of zero Reynolds number. Finite element 
methods (FEMs) and finite difference methods (FDMs) are potentially applicable to generalized 
Navier-Stokes equations; however, they have to be coupled with a technique to track the advecting 
fluid boundaries and interfaces. The difficulty in the interface tracking is inherently related to the 
complexity of its topology. Therefore techniques which can handle small surface deformations fail 
when applied to large interface distortions. For simulation of the former category of flows (small 
surface deformations) the FEM is more popular. Here the fluid boundary is described by a set of fixed4 
or def~nning~- '~  meshes, the location of which is obtained by either an iterative procedure or the 
Lagrangian movement of the interface nodes. This results in the simultaneous calculation of the 
position of the free surface and the field variables at the new nodal positions. Boundary-fitted 
orthogonal c~-ordinates*~-'~ and Lagrangian  technique^'^>'^ are also used to follow the advecting 
liquid interfaces. These techniques are confronted with difficulties when applied to large surface 
deformations, surface breaking and merging. 
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More versatile and robust techniques for free surface flow modelling are the front-tracking methods. 
Here an extra set of parameters is used to trace the fluid boundaries. Front-tracking techniques are 
divided into two groups: surface-tracking and volume-tracking methods. In general the former class 
gives a more accurate description of the free surface but the latter class can handle complicated liquid 
regions more easily. In surface-tracking methods the position of the free surface is described in a direct 
way, either by specifying a set of marker points located on the free surface'* or by introducing a height 
fimction which explicitly describes the free surface po~ition.'~ There are several problems associated 
with surface-tracking methods. The main problem is that the marker points will be non-uniformly 
distributed as the interface evolves. Also, relatively high computer storage is needed to maintain the 
interface continuous and smooth. 

Volume-tracking techniques define a tracer to follow the whole fluid region. The two commonly 
used techniques are the MAC and VOF techniques. In the marker-and-cell (MAC) technique?&23 
hundreds of massless marker particles are added to the fluid. These particles are then advected in a 
Lagrangian sense using the average of Eulerian velocities in their vicinity. In the volume-of-fluid 
(VOF) a volume fraction parameter f is described for each of the Eulerian grid cells. A 
cell is assumed to be filled with liquid iff = 1, empty iff = 0 and partially full if 0 < f < 1. Different 
methods are developed to advect the volume fraction field and to reconstruct the fluid surface. VOF- 
based techniques can handle the most complex free surface flow problems. Surface breaking and 
merging can be treated with this technique, since the flow field calculations are decoupled from the 
free surface location identification. Here, knowing the initial fluid surface location and the velocity 
field, the surface is advected using the volume fraction field, a surface is reconstructed based on the 
newly calculated volume fractions and finally the conservation equations are solved for the new fluid 
domain to find the velocity field. This procedure is repeated throughout the advection of the fluid 
region. There is generally no need for iteration between the flow field calculation and the interfie 
location identification. However, presently there is a major shortcoming of these techniques. Although 
the interface itself can be located inside a cell, the governing equations for the field variables are only 
solved for the whole cell. This results in significant inaccuracies in the treatment of the interface 
viscous stresses and the surface tension forces. 

The present paper describes a new technique for the simulation of free surface flows and inwaces 
by combining the FEM with deforming interface mesh and a VOF-based technique called FLAIR3' for 
surface advection. The combination of these two will solve the major shortcomings of each technique. 
The VOF-based technique will allow the simulation of interfaces with large deformations, even with 
surface merging and breaking. In addition, the FEM with deforming interface mesh allows accurate 
implementation of the boundary conditions. In Section 2 the governing equations of free surface 
viscous flows are provided. Their finite element formulation is given in Section 3 and the mesh 
generation and advection techniques are described in Sections 4 and 5 respectively. Sections 6 and 7 
provide a detailed description of the simulation of surface breaking and surface merging via two 
example problems. Concluding remarks axe made in Section 8. 

2. GOVERNING EQUATIONS 

The problem considered here is the laminar flow of a viscous incompressible fluid. The assumptions of 
a Newtonian fluid with constant properties are also applied. Therefore the flow field is governed by the 
continuity and momentum (Navier-Stokes) equations 
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where j? = 0 for 2D Cartesian and /3 = 1 for axisymmetric flows. Equations (1H3) are written in non- 
dimensional form using the non-dimensional parameters 

rJ fU i 
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t = -  r = -  z = -  

p U2L W e = - ,  R e = - ,  PUL 
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where p,  p and c represent the density, viscosity and surface tension f the fluid 
respectively. Lengths and velocities are normalized with the characteristic scales L and U. 

The boundary conditions are given by 

on S1, 
u = F(z ,  r) 
v = G(z, r) 

oeffi ient 

where S1 and SZ are the parts of the boundary with Dirichlet and Neumann boundary conditions 
respectively, Z, and f, denote the z- and r-components of the total surface traction and n, and n, 
denote the direction cosines of the unit outer normal to the surface S2. On the free surface, Z, and Trr 
are the components of the surface tension, which is inversely proportional to the radius of curvature of 
the surface, R:: 

- e/RL 1 1  ~ , . , . = - n  --- 1 1  
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7, = - 

The non-dimensional radius of curvature of an axisymmetric surface is defined as 
1 1 1  
- =-+-, 
Rc R1 R2 

with R1 and R2, * being the principal radii of curvature of the surface, defined as 

No contact between the fluid and the solid surface is involved in the problems considered in this paper, 
so the contact angle is not modelled here. 

* For a two-dimensional surface, Rz = 00. 
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3. FINITE ELEMENT FORMULATION 

The selection of the finite element solution to the conservation equations (1H3) is subject to two 
major restrictions. First, because of the requirements of the advection technique, which is basically 
designed for finite difference schemes, the finite element solution should be in terms of primitive 
variables based on the linear quadrilateral elements. Furthermore, owing to the significance of the 
surface tension effects in free surface flows, the model must be capable of handling the pressure, 
velocity, velocity gradient and stress boundary conditions directly. 

A finite element model which complies with these requirements is the penalty function formulation, 
in which the continuity equation is absorbed in the momentum equation by representing the pressure as 

where 1 (0(109)) is a large number depending on p and Re33. Substituting the pressure equation (7) 
into the momentum equations (2) and (3) and applying the Galerkin method, the following matrix 
equations are obtained: 

Here 
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where the Ni are the shape functions for the isoparametric quadrilateral elements in the domain i2 with 
boundary r. Integrals (9H12) and (16) are evaluated by the 2 x 2 Gauss-Legendre integration rule. 
The [L]-matrix should be singular for the penalty h c t i o n  approach to be successll. A reduced Gauss 
integration is used to evaluate the [L]-matrix given by integrals (13H15). The surface traction resulting 
from the surface tension effects is directly integrable over the free surface using equation (16). 
Equation (8) is integrated in time using an implicit forward-differencing finite difference technique. 

4. MESH GENERATION 

Mesh generation for a finite element problem has proven to be an important part of the overall solution 
procedure. A large effort is devoted to this issue in order to generate the most efficient mesh for 
every particular problem, using various techniques such as Laplace's equation34 and transfinite 

These techniques generate the interior nodes based on the predefined boundary nodes 
and in general there is no control on the location of the generated interior nodes. In the case of 
highly distorted domains it is necessary to divide the whole domain into simple subdomains. How- 
ever, where moving boundaries are involved, the solution domain experiences successive evolutions 
in the come  of time, resulting in the redefinition of subdomains. This can be tedious for very 
complicated boundary evolutions such as the cases encountered in breaking or merging of two 
liquid regions. These limitations along with the requirements of the advection technique for 
moving interfaces make the use of automatic mesh generators inconvenient. 

In the present work a rectangular finite element mesh is used in order to utilize the existing interface 
advection techniques. Implementation of the finite element method on the Eulerian grid for solving 
moving boundary problems is well developed4s38 and can be applied to the present model. In order to 
describe the mesh generation method used in this work, consider the closed curve located on the 
Eulerian grid shown in Figure 1. The master element chosen for the finite element mesh is the 
isoparametric linear quadrilateral element, which is also suitable for the penalty fimction method used 

Figure 1. Finite element mesh numbering in the Eulerian grid. The bold numbers are element numbers and the smaller numbers 
are node numbers 
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( 7 )  ( 8 )  ( 9 )  

Figure 2. Different cases for the wet cell regarding the intersection points of the interface with the cell faces 

in the momentum solver. Hence each full cell will be considered as one element and we begin 
numbering the elements with the first full cell located on the left of the lowest row, then continuing 
towards the full cells on the right of this cell and repeating the same procedure for the other rows. The 
intersecting points of grid lines are the nodes and they are numbered counterclockwise for each 
element, starting from the lower left node, as shown in Figure 1. 

Once the full cells have been completely transformed into elements, the wet cells must be employed 
to define the rest of the mesh. Depending on the intersection points of the interface line with the faces 
of the cell, nine possible cases for a wet cell can be recognized. These cases are shown in Figure 2, with 
the wet cell located at the centre of a 3 x 3 cell unit. Note that the unit is first rotated so that the heavy 
side (the side which contains more mass than the other three sides) is on the lower right corner as 
shown in Figure 2. These cases can be distinguished by examining the four cells located on the middle 
of each side of the unit, namely cells I-IV as shown in Figure 2. All possible cases are summarized in 
Table I. In cases ( 5 x 8 )  of Figure 2 the four nodes are well defined, while in cases ( 1 x 4 )  a fourth 
node has to be defined between the two interface nodes. Case (9) includes five nodes and cannot be 
considered as one element. Therefore an extra node is defined between the two nodes which are 
located on the free surface. This transforms the wet cell into two elements. 

The above procedure may result in very small elements on the free surface adjacent to larger 
rectangular elements. These small elements are encountered when the free surface crosses an interface 
cell very close to its interior node@) as seen in Figure 3(a). Therefore the mesh should be altered in this 
region to redefine the spacing between the nodes. This can be accomplished by moving the interior 
nodes of the surface cells away from the interface. Figure 3(b) shows the altered mesh, which now has 
a better aspect ratio for the surface elements. The inward displacement of the interior node is 
proportional to its distance from the interface: the closer the node is to the interface, the more it is 
displaced. 
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(b) 

Figure 3. The mesh containing small elements (a) is altered by displacing the interior nodes of the surface cells (5) 

Table I. Case-distinguishing criteria for wet cells shown in Figure 2 

Case Cell I Cell I1 Cell I11 Cell IV 

(1) Wet Wet Empty Empty 
Wet Full Empty Empty 
Full Wet Empty Empty 

(2) 

Full Full Empty Empty 
(3) 
(4) 
(5) 

Full Wet Wet Empty 
(6) 
(7) 

Full Full Wet Empty (8) 
(9) 

Wet Full Empty Wet 
Full Full Empty Wet 

Full Full Wet Wet 

5 .  SURFACE ADVECTION 

Once the velocities have been obtained, the interface has to be advected. We have implemented the flux 
line segment model for advection and interface reconstruction (FLAIR) originally developed by 
Ash@ and Poo3' for 2D Cartesian advection and later extended by Mashayek and Ash&* to 
Axisymmetric flows. In this technique a volume fractionJ, is defined for each cell such that& = 1 
for cells which are filled with liquid, fi', = 0 for empty cells and 0 < fi', < 1 for interface or wet cells. 
Therefore the liquid domain is discretized and represented by a set of volume fractions which we will 
refer to as thef-field. The FLAIR technique is designed to advect thef-field by knowing the surface 
velocities and to reconstruct the surface topology based on the newf-field. 

The principle of surface advection by FLAIR is illustrated in Figure 4. It is assumed that the surface 
can be represented by a set of line segments drawn at the boundary of two neighbouring cells. 
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x 1  x2 
Figure 4. Intefiace advection method for two neighbouring cells by FLAIR technique 

Therefore each line segment can be described by y = M + b, where the constants u and b can be 
determined based on the known volume fractions31 f i , j  and &+I. Once the surface has been 
reconstructed by the combination of all surface line segments, it is advected by calculating the mass 
flux in and out of each cell. The mass flux in each time step 6t moving from one cell to the 
neighbouring cell can be calculated by using the velocity at the boundary of the two cells, ui,j, as 

6f = y d x = & ( + + ) + b ( X 2 - x ~ ) .  J:: 
Here x2 - XI represents the distance the mass is advected in time at, i.e. x2 - X I  = ui,jSt. Therefore the 
mass flux in time step 6t for a surface with the orientation shown in Figure 4 and x2 = 1 is 

Sf = u i , j 6 t ( ~  + b - & ~ i , j S t ) .  

Other surface orientations and advection in the vertical direction can be considered in a similar 
The new cell volume fraction is then obtained by adding the old value to the net influx of 

the volume fraction to each cell. 
This advection technique has been basically designed for the finite difference staggered grids where 

the velocities are defined at the middle of each cell face. However, finite element solution of the flow 
provides the velocities at the nodes of the element, which are not suitable for this advection technique. 
Mashayek and have shown that the advection criterion can be deduced from satisfymg the 
continuity of the flow through the faces of each cell during every time step. We use the same idea and 
calculate a mean velocity from the known velocities at the two nodes attached to the ends of one cell 
face such that the same mass of fluid passes through that face. 

Consider the axial direction in an axisymmetric flow. Each cell in the r-z plane is mapped into an 
isoparametric master element in the 5-q plane as shown in Figure 5. The mean velocity U23 across the 
face 2-3 is defined by 

where the velocity and radius are defined as 

u = ~ i N i ,  r = riNi, (18) 

N2(5, ?I = -$(5 + I)(? - 11, 
N4(5, ?> = -f(t - I)(? + 1). 

with the Ni being the shape functions for the isoparametric quadrilateral elements, defined as 

Nl(5 ,  ?> = t ( 5  - I)(? - I ) ,  
N3(L ?I = tcr + I ) ( ?  + 11, (19) 
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(a) (b) 

Figure 5. Mapping of the Eulerian element (a) into the mastessoparametric element @) 

Then 

The side 2-3 of the cell is mapped onto the side 2-3 of the master element where 5 = 1 and d< = 0. 
Therefore 

1 

u dT = 271 (u& + u ~ N ~ ) ( Q N ~  I, 
After substituting for N2, N3 and their derivatives, we 

r ”. 

find that 

The integral on the left-hand side of equation ( 1  7) can be written as 

dT = ~ ( 4  - 6) .  J,, 
Combining equations (17), (20) and (21) gives 

Applying the same analysis in the radial direction shows that V is just the average of the v-velocities at 
the ends of the cell face: 

v34 = 3(v3 + v4). (23 1 
In order to clarifl the connection between the various steps employed in the FEM-VOF technique, 

consider the oscillation of a liquid drop as shown in Figure 6. Owing to the symmetry, a quarter of the 
drop, as depicted by the shaded area in Figure 6(a), is analysed. By assigning a value of the volume 
fiactionf to every cell, this area is converted to a set of numbers as shown in Figure 6(b). The interface 
shown in Figure 6(c) is reconstructed based on thisf-field by using the FLAIR a lg~r i thm.~~*~~  Then, 
by implementing the method explained in Section 4, the FEM mesh is generated as shown in Figure 
6(d) with thick lines. After the momentum equations have been solved, the velocities are obtained at 
the nodal points of the mesh. These velocities, which are shown in Figure 6(e), are then transformed to 
the velocity field depicted in Figure 6(9 by applying equations (22) and (23). In the next step the new 
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(a) ( h )  

Figure 6. Illustration of the steps taken in FEM-VOF: (a) definition of the initial interface; @) description of thef-field; (c) 
reconstruction of the interface based on the f-field; (d) mesh generation; (e) calculation of the velocity field by FEM, (9 
calculation of the velocities at the cell faces; (9) advection of the liquid and calculation of the newf-field based on FLAIR, (h) 

reconstruction of the new interface 

f-field is obtained through advecting the old f-field by implementing FLAIR. The new f-field is 
shown in Figure 6(g) and is used to reconstruct the new interface depicted in Figure 601). This will 
complete the sequences employed in the first time step and in continuation the steps of Figures 6(d)- 
601) will be repeated for each time step. 
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The FEM along with the VOF method for intdace advection has several important advantages. The 
first advantage of FEM-VOF is in modelling surface breaking and merging. In fluid regions where 
surface breaking or merging is about to occur, the accuracy of the solution can be greatly enhanced if 
very small fluid thicknesses at the break-up point or very small distances between the two merging 
surfaces are considered. This can be easily achieved by the FEM-VOF method, since the interface 
boundary condition can be applied accurately. The previous VOF techniques combined with the finite 
difference method (FDM-VOF) have to resort to an interpolation technique for implementation of the 
interface boundary conditions. Since the liquid surface is continuously moving, new cells are being 
formed. Therefore, in order to complete the boundary conditions needed for the momentum equations, 
new velocity components have to be defined for the newly formed interface cells. This is achieved by 
applying the continuity equation to these interface cells.31 In many of the VOF techniques, when the 
thickness of the liquid comes within the order of one cell size, this method fails, since it results in 
double definition of the boundary velocities. Therefore the criterion for liquid break-up is set to be 
when the local liquid thickness reaches one cell size. 

Another advantage of FEM-VOF over FDM-VOF is that the former defines a computational 
element for the part of the wet cell which actually contains fluid, while in FDM-VOF the wet cells are 
treated in the same way as the full cells using the whole rectangular cell for the discretization of the 
momentum equation. This allows accurate calculation of the boundary conditions without resorting to 
time-consuming interpolations as in FDM-VOF. By implementing the FEM in the momentum solver, 
this technique is capable of handling the pressure and velocity boundary conditions accurately. The 
techniques based on the FDM are incapable of applying these boundary conditions directly. In the most 
recent improvements presented by Unverdi and Trygg~ason~~ and Brackbill et a1.:' the surface tension 
effects are considered as a body force distributed in the cells close to the interface. This may result in 
large errors when the thickness of the fluid is small, which is unavoidable in breaking and merging of 
liquids. In the present technique the interface is treated as a discontinuity, which has better resolution 
in comparison with the techniques that smear the interface over some finite region. 

Finally, FEM-VOF significantly increases the computational efficiency, because a smaller number 
of cells will be sufficient to model large surface deformations. The number of cells in each direction 
used in this technique is 2.5 times smaller than that required in the FDM-VOF technique of Ash@ 
and P0031 in order to have the same accuracy. The problem of area change reported by Ash@ and 
P0031 is almost completely resolved by keeping the divergence of the velocity less than for each 
element in each time step. The momentum solver is fully implicit and therefore imposes no significant 
limit on the selection of the time increment. Consequently, the time increment will be determined by 
the advection technique, which is less restricted than the common explicit or semi-implicit momentum 
solvers. This will result in a substantial decrease in the total number of time steps and will increase the 
overall efficiency and accuracy of the method. 

6. SURFACEBREAKTNG 

As mentioned earlier, in FEM-VOF the continuous movement of the interface line inside a wet cell 
results in the formation of different elements at different time steps. There is no limit on the size of 
these elements, so the thickness of the liquid can be reduced to a small fraction of the cell size. The 
advantage of this capability is illustrated by the surface movement of an unstable capillary jet as shown 
in Figure 7. The initially disturbed surface is indicated in Figure 7(a). We have used two cells for the 
initial radius and 16 cells for one wavelength of the jet. Implementing the FEM-VOF technique allows 
us to accurately decrease the thickness of the jet as much as desired. For instance, the curve depicted in 
Figure 7(c) shows the jet surface which has a minimum radius of about 5% of the undisturbed initial jet 
radius. This technique is implemented to simulate the break-up of a capillary jet. 
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(C)  

Figure 7. Computational model for the break-up of a liquid jet: (a) initial disturbed surface; @) surface location at the break-up 
limit for FDM-VOF; (c) surface location at the break-up limit for FEM-VOF 

Ray1eigh:l for the first time, obtained a linear analytical solution for the instability of inviscid jets 
in vacuum. Later the analytical analysis was extended to non-linear inviscid jets by Yuen4’ and linear 
viscous jets by Chandra~ekhar?~ However, the non-linear instability of viscous jets has not been the 
subject of analytical investigations. The experimental and numerical studies cover a broader range and 
are reported by a large number of researchers, such as the works done experimentally by Goedde and 
Yuen4 and Vassallo and A ~ h g r i z ~ ~  and numerically by Mansour and Lundgren?6 

As a test problem for the FEM-VOF technique we have considered the break-up of an infinitely long 
jet in vacuum, subject to a periodic surface disturbance in the form of 

r(z) = 1 + q cos (k), 

where q and k are the amplitude and wave number respectively. The undisturbed radius of the jet is 
selected as the length scale, while the time scale is obtained by equating the Weber number to unity. In 
order to validate the results, we consider the break-up of a glycerin-water jet with k = 0.262 and 
Re = 2.045, which has been experimentally studied by Goedde and Yuen.4 The results of our solution 
with qo = 0.02 are shown in Figure 8 in different snapshots. Initially, the jet begins to swell at 
z = f12.0 and necks down at z = 0. However, after a short time interval the point having minimum 
radius starts moving towards the points z = f12.0. Finally the jet breaks at z M 69.0, leaving a 
spherical drop and a cylindrical ligament. 

Figure 9(a) shows the variation in the amplitude of the swell and neck regions of the jet with time. 
The non-linear effects are clearly seen close to the break-up point, where the amplitude of the swell 
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region becomes flat and the neck region reduces rapidly. To evaluate the accuracy of the calculations, 
we have compared our numerically calculated growth rates with Goedde and Yuen’sM experimental 
data and Chandra~ekhar’s~~ analytical results. 

The same procedure as used by Goedde and YuenM for the calculation of the growth rates fiom the 
experimental data is also used here. The exponential growth rate o is defined by q = qoem‘, where q is 
the wave amplitude with the value of qo at t = 0. Then 

42.369 a 
I I 

1 
t 

0 = - In (;) . 

Therefore o is the slope of the curve In(q/qo) versus time when this curve is approximated by a 
line. We have observed the same variation in the growth rate as reported by Goedde and Yuen.M The 
exponential growth rate is not constant at any particular point of the jet surface, but the exponential 
growth rate of the difference between the swell and the neck is nearly constant (except close to the 
break-up point) as shown in Figure 901). The numerically calculated average growth rate for the 
swell point is o, = 0.153 and for the neck point is on = 0.107. The growth rate for the difference 
between the amplitude of the swell and neck points is w = 0- 13 1. The analytically calculated growth 
rate for a viscous jet43 for the same Re is o, = 0-134. Goedde and Yuen7s4 experiments under 
approximately the same conditions resulted in a growth rate of we = 0-1 18. Considering the 
experimental error, which was estimatedM to be about 11%, the coarse numerical mesh used in our 
simulation and that the initial disturbance amplitudes are not the same (initial disturbance amplitudes 
for the experimental results are not reported), the observed differences between the experimental and 
numerical results are acceptable. 
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Figure 9. (a) Variation in swell point and neck point amplitudes with time. Amplitude and time are both non-dimensionalized. @) 
Logarithmic plot of amplitude difference between swell and neck points corresponding to Figure 8 

7. SURFACE MERGING 

The ability to accurately implement the boundary condition becomes more physically attractive when 
the collision of two liquid drops in non-vacuum surroundings is involved. In this case the fluid trapped 
between the drops prevents merging and flat regions are developed on the surface of the drops which 
are about to collide. The thickness of the fluid between the drops is decreased owing to the pressure 
generated by the drops and merging becomes possible if the initial momentum of the drops is capable 
of producing a pressure high enough to rupture the trapped liquid film, otherwise the drops are 
bounced apart. In a real collision process the thickness of the film may be reduced to a level 
comparable with molecular size and still the merging be prevented. Therefore the margin of bouncing/ 
merging collisions is not accurately found by implementing techniques that model the merging 
phenomenon at the level of cell size. 

The complex problem of the collision of two viscous liquid drops is chosen to demonstrate the 
capability of the FEM-VOF method in handling the merging of two liquid surfaces. Because of the 
complexity of this problem, the majority of the published literature in this area has been limited to 
experimental research-Ashgriz and P o o ~ ~  provide a detailed count of the previous works in this field 
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up to 1990. Limited numerical simulations have been attempted by Po0 and Ashgriz4* using the 
FLAIR algorithm. However, their simulation was for the collision of two liquid cylinders or two- 
dimensional drops. 

Here we present the binary collision of 3D drops in axisymmetric co-ordinates. This will limit us to 
only head-on collisions. Figures 1 O(a)-1 O(h) show the time evolution of the collision of two drops with 
Re = 50 and We = 10-Re and We are evaluated based on the initial drop diameter and the relative 
velocity between the two drops, which is equal to 6 for the present calculations. The initial condition is 
shown in Figure lO(a), where only two elements4ne on each side of the axis of symmetry-are set to 
touch. This condition is not necessary and the drops could be allowed to travel towards each other from 
a finite distance. The velocity vector on each node is plotted in all figures to show the flow field and 
indicate the number of elements in the system. The sizes of the vectors are scaled relative to the initial 
velocity and the ratio is given as x. Note that the number of elements can change as it has in Figure 
lo@). 
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Figure 10. Collision 
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Avery interesting transient flow field is observed during the collision of the two drops. Shortly after 
the collision (t = 0.09, Figure 100)) the flow at the back side of each drop slows down, while the top 
and bottom sides of the drops continue their motions. This results in the eventual formation of the 
shape shown in Figure lO(d). At the collision surface the stagnation-type flow pushes the interface to 
the sides, generating a combined drop as shown in Figure 1O(Q The inertia forces keep pushing the 
liquid to the sides and the surface of the drop moves inwards around the axis of symmetry as seen in 
Figure lO(e). Therefore the surface tension forces are no longer in favour of pushing the liquid away 
from the axis. The maximum inward displacement of the surface is reached in the situation shown in 
Figure lO(f), which indicates the initiation of backward flow along the axis. The region covered by the 
reversed flow expands towards the sides of the drop (Figure lO(g)) until finally surface tension and 
viscous forces overcome the initial momentum of the drop and the fluid flow is completely reversed. 
The drop tends to become spherical with identical curvature everywhere along the boundary. Without 
the viscous effects the drop will oscillate infinitely; however, the presence of viscosity will finally bring 
it to rest. Competition between surface tension and viscosity during the intermediate stages of drop 
deformation may result in various modes of oscillations. 

There are no reported experiments on low-Re drop collision with which to compare the numerical 
results. The Reynolds numbers for the water drop collisions of Ashgriz and P o o ~ ~  are an order of 
magnitude larger than the ones reported here and could not be simulated. However, qualitative 
comparisons show the same evolutionary process. The two examples presented here use a very coarse 
mesh, which results in some surface roughness. The mesh size is kept large to show the actual interface 
lines and also the versatility of the method. The surfaces can be made smooth by reducing the mesh size. 

8. CONCLUDING REMARKS 

A new technique is developed for simulating free surface flows with large deformations. The finite 
element method (FEM) is used to solve the flow equations and a volume-of-fluid (VOF) technique is 
implemented for surface determination and interface advection. Linking between FEM and VOF is 
provided by developing a new mesh generation technique. Detailed comparison with finite-difference- 
based VOF techniques is carried out by considering two of the most commonly encountered problems 
in free surface flows, namely liquid breaking and merging. Compared with other FEM techniques 
currently used for simulating free surface flows, FEM-VOF may be less accurate, but the other FEM 
techniques have difficulty in modelling the break-up and merging of liquids during a single flow 
simulation. 

To the best of our knowledge, this work represents the first attempt to combine the finite element 
method with a volume-of-fluid technique. Therefore modifications are still expected to be made in 
order to improve the versatility and applicability of the technique. The Mesh generation, for instance, 
can be modified to obtain a more efficient mesh by providing better aspect ratios for the surface 
elements. Also, the loss of accuracy due to the velocity interpolations might be decreased by 
developing a new advection technique that utilizes nodal velocities rather than facial velocities. 
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